Cone Penetrometer

An Enabling Technology for Characterization and Monitoring Systems

January 30, 2001

Wesley L. Bratton (509) 942-1841 wbratton@ara.com

Outline

- History
 - CPT use at DOE facilities
 - DOE developed Tools
- Characterization Technologies
 - Platforms
 - Sensors
 - Samplers
- Monitoring Approaches
 - Soil gas monitoring points
 - Monitoring wells
 - CPT installed Sensor Networks
- Summary

History

- Developed in Netherlands in 1934
- 1990 DOE begins working with industry to advance technology for environmental applications.
- >400,000 ft conducted at SRS since 1989
- >6,000 ft conducted at Hanford since 1991
- >1,000 ft conducted at NTS
- Also used at SNL, INEEL, Paducha, Pantex
- Basic technology is mature with new tools constantly being added.

3

DOE Developed Technologies

1990 DOE begins working with industry to advance technology for environmental applications.

- Laser Induced Fluorescence Sensor
- Electrical Resistance & Soil Moisture
- Heavy Weight (30 Ton) CPT
- UTD Polo Tracking System
- Raman Spectroscopy
- High-Speed Gas Chromatography
- Wireline CPT

- Raman Spectroscopy
- High-Speed Gas Chromatography
- Laser InducedBreakdownSpectroscopy (LIBS)
- Permeability Probe
- Sonic CPT
- Gamma Spectroscopy
- X-Ray Fluorescence Sensor for Metals

30-ton CPT Rig

Vadose Zone Workshop

Hanford Penetration Platform

Track Mounted Units

CPT Toolbox

- Characterization Sensors
 - Soil Stratigraphy & Type
 - Soil Moisture and Resistivity
 - Video Imagery
 - Gamma Spectroscopy (beta ?)
 - Raman Spectroscopy
 - Fluorescence Probes
 - pH, Temperature, ORP
 - DNAPL Sensors?
 - Air and Water Permeability
 - Wireline CPT

- Sampling
 - Soil, Water, Soil Vapor
- Monitoring System
 - Networked sensors
 - Electrical Resistance Tomography (ERT)
 - Monitoring Wells
- Remediation Installations
 - Steam Injection
 - Soil Vapor Extraction
 - Six-Phase Heating Feasible
 - Reactive Barrier Feasible

Standard Cone Penetrometer and Sampling Systems

Data from Standard Cone Penetrometer Test

11

SMP Probe Features

- Simultaneous measurement of soil resistivity and apparent dielectric (e_a)
- Correlation of dielectric to q (volumetric soil moisture)
- ♦ For saturated sites, porosity = q
- ♦ Dielectric measured at 100 MHz, hence minor influence of conductivity on e_a
- SMP outputs voltage directly into A/D system

SMP Data Obtained During a Field Trial Showing Resistivity and Soil Moisture Profiles

Video CPT Image

- Image has accurate color resolution
- Assists with soil classification determination
- Continuous VideoImage of Penetration
- DNAPL's can be seen on video image

Video Cone images of Coal Tars at a site in NY

Gamma Radiation Sensor

Gamma Radiation Probe and Sensor

Vadose Zone Workshop

Gamma Radiation-Cone Penetrometer Technique (Gamma-CPT) is a cost effective and intrinsically safe method for locating radiation contamination in-situ.

Advantages:

- Employees are not exposed to radioactive material, adding to site safety.
- Drilling waste is virtually eliminated, resulting in significant hazardous waste disposal cost savings.
- CPT soundings can be performed at locations considered too hazardous for conventional drilling operations.
- Time required for a Gamma-CPT sounding is significantly less than that of a conventional drilling investigation.
- Soil stratigraphy information is obtained simultaneously with radiation contamination information.

Schematic of Gamma CPT System

Gamma - CPT system specifications

- Continuous Total Gamma Profile during Penetration.
- Energy Range 0 2.8 MeV.
 - Cesium, Cobalt, Thorium and many other gamma emitters.
- Resolution 7.5 to 9.0 % for Cs137.
- Efficiency 170 cnts/s/μCi for Cs137.
- Minimum Detection Limit.
 - 2 4 pCi/gm for Cs137
 - 4 10 pCi/gm for Co60

Unique System Improvements

- Improved Downhole Pre-amp
 - 1 inch configuration

Vadose Zone Workshop

- Provides initial shaping of pulses which increases resolution
- Temperature correction routines
 - Cone under goes a large temperature change under push conditions which alters the energy calibration of the crystal.

Field Investigations

- Nevada Test Site October 1999.
 - Immediately Following TIE Conference.
 - Area 25 radiological waste dump sites.
- Hanford Complex S-Tank Farm.
 - First time CPT operations in Tank Farm.
 - Vadose Zone Characterization
- IMC Phosphate Mines
 - Detection of phosphate rich regions for Mining Characterization.
- Nevada Test Site October 2000
 - Investigation of leach fields for radiological contamination.

G-CPT Characterization of the RMAD and EMAD Waste Burial Sites at the Nevada Test Site.

- 80 Penetrations conducted to depths of 15 to 20 feet to characterize suspected burial waste sites.
- Identified several localized hot spots of contamination.
- Measured soil gas concentration in conjunction with the gross and spectral gamma measurements.
- Rods were wiped clean by the soils and no decontamination of the rods was necessary.

Penetration Data from NTS R-Mad Area

Spectra Data From Penetration RE-004

Spectra Data From Penetration EM-002

Gamma Spectroscopy CPT characterization of S-Tank Farm at the DOE Hanford Facility

- Project Accomplishments
 - 9 Gamma CPT pushes to the tank bottom of 45 feet. Recorded Gross Gamma and Spectral Gamma when count rate above 20 pCi/gm Cs¹³⁷.
 - Collected Soil samples in regions of 50 pCi/gm and below regions with >50 pCi/gm or Cs¹³⁷.
 - Detected contamination at the bottom of the tanks with count rates > 150,000 Cnts/sec.
 - All rods retrieved as clean from hole without decontamination.

S-Farm Site Layout

Vadose Zone Workshop

Penetration Profile from S-Farm (CP-04-04)

Vadose Zone Workshop

Comparison of Gamma-CPT to Hanford drywell

logging system.

 Calibrated probe in natural gamma radionucluide models at the Hanford Site

- Determined inverse efficiency curve to calculate concentrations from net area peaks in collected spectra.
- For Cs¹³⁷
 - pCi/gm=10.2(cps)
 - γ /sec/gm = 0.17 cps

Natural Gamma Thorium Model

SBT 900

Th232

G-CPT Characterization of the RMAD and Test Cell C leach fields at the Nevada Test Site.

- 80 Penetrations conducted to depths of 5 to 12 feet to characterize random locations selected in the leach field.
- Information used to identify sampling depths and locations for step-outs.
- Gamma-CPT information to be used to determine sampling volumes and if samples can be transported for analysis.
- Data currently under review by DOE-Nevada.

Wireline CPT System

- Able to exchange tools without removing rods from the ground.
- Each tool locks in place near the end of the rods.
- Permits various characterization tools to be used during a single characterization (includes samplers).

Wireline CPT Benefits

- Reduced time/reduced cost
 - Single penetration for sounding, sampling, sealing
 - Multiple samples from one penetration
- Fewer samples sensor tells where to sample
 - Lower cost
 - Reduced waste generation
- Reduced risk
 - Sealing confined layers fewer holes, higher confidence that grout is placed in the original hole

Soularing a call Mitty M

Resistance, Pore Pressure, Electrical Resistivity, and Soli Moisture

Wireline Soil Sampler

Vadose Zone Workshop

CPT Monitoring systems

- Most CPT sensors are easily networked.
- ARA has developed a WEB based monitoring system that allows access from any internet terminal using standard web-browser software.
- 2 inch PVC well as also easily installed using CPT.
- CPT can be used to install Advanced Tensiometers from Sission at INEEL.
- Other monitoring approaches such as ERT as also easily accommodated.
- CPT offers significant costs savings over traditational monitor well installation approach.

CPT Installation of Monitoring Wells

Vadose Zone Workshop

CPT Installed Wells

\$2,250

Hardware

(\$450)

Installation

(\$1,800)

CPT

Installation of a 150 ft
Direct Push Well
(Savannah River Site)

\$6,843

Mud Rotary Drilling

Soil Vapor Monitoring Well (Hanford Site)

Installation of a 50 ft

\$21,463

Cable Tool Drilling

\$2,670

Installation

CPT

Actual Costs from LANL Environmental Technology Cost-Savings Analysis Project (1991-1995)

^{*}Hardware includes, PVC casing, filter pack, bentonite seals, well head, pad

CPT Costs

- Mobilization/ Demobilization: \$5,200 (Aiken, SC to OH)
- Daily Costs: \$280/hr (standard work)
 - daily footage depends on type of work performed but typically 200-300 ft/day
 - Gamma CPT \$380/hr 150-200 ft per day
- Waste Disposal Costs: minimal

Summary of G-CPT Experience

- Economical and fast method for detecting radiological contamination in-situ.
- Generally able to identify and quantify the contamination type with spectral information.
- Able to delineate regions for sampling as well as regions where contamination is too high to sample.
- Significantly reduces waste generation.
- Rods are wiped clean by soil upon retraction, even in regions of very high contamination.

Summary

- CPT can have a variety of roles:
 - Characterization
 - Sampling Activities
 - Monitoring Systems
- CPT can be used in vadose zone down to the caliche layer in 200 West.
- CPT is less expensive than drilling therefore reducing costs or expanding coverage.
- ARA soil moisture probe validated in six soil types and three geologies.
- Calibration for individual soil samples showed only
 +/-2% variation from gravimetric determination

DNAPL Movie

Soil Moisture Probe Development

- Developed CPT probe in 1995
 - CPT probe was evaluated by Argonne National Laboratory under the SCAPS Program
 - > Results were most accurate of three moisture sensors tested.
- USDA Phase I study conducted in 1997 for Irrigation Monitoring
 - Laboratory results are presented.
- Working on:
 - USDA Phase II Additional sensor evaluation and networking.
 - Moisture approach for deep vadose zone applications.

Grain Size Distribution for Different Soil Types

Particle Diameter (mm)

Calibration Response Curve for the Different Soil Types

Penetration CP-04-04

